Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.075
Filtrar
1.
Mol Genet Genomic Med ; 12(4): e2439, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38613222

RESUMO

OBJECTIVE: To characterize the phenotype spectrum, diagnosis, and response to growth-promoting therapy in patients with ACAN variants causing familial short stature. METHODS: Three families with ACAN variants causing short stature were reported. Similar cases in the literature were summarized, and the genotype and phenotype were analyzed. RESULTS: Three novel heterozygous variants, c.757+1G>A, (splicing), c.6229delG, p.(Asp2078Tfs*1), and c.6679C>T, p.(Gln2227*) in the ACAN gene were identified. A total of 314 individuals with heterozygous variants from 105 families and 8 individuals with homozygous variants from 4 families were confirmed to have ACAN variants from literature and our 3 cases. Including our 3 cases, the variants reported comprised 33 frameshift, 39 missense, 23 nonsense, 5 splicing, 4 deletion, and 1 translocation variants. Variation points are scattered throughout the gene, while exons 12, 15, and 10 were most common (25/105, 11/105, and 10/105, respectively). Some identical variants existing in different families could be hot variants, c.532A>T, p.(Asn178Tyr), c.1411C>T, p.(Gln471*), c.1608C>A, p.(Tyr536*), c.2026+1G>A, (splicing), and c.7276G>T, p.(Glu2426*). Short stature, early-onset osteoarthritis, brachydactyly, midfacial hypoplasia, and early growth cessation were the common phenotypic features. The 48 children who received rhGH (and GnRHa) treatment had a significant height improvement compared with before (-2.18 ± 1.06 SD vs. -2.69 ± 0.95 SD, p < 0.001). The heights of children who received rhGH (and GnRHa) treatment were significantly improved compared with those of untreated adults (-2.20 ± 1.10 SD vs. -3.24 ± 1.14 SD, p < 0.001). CONCLUSION: Our study achieves a new understanding of the phenotypic spectrum, diagnosis, and management of individuals with ACAN variants. No clear genotype-phenotype relationship of patients with ACAN variants was found. Gene sequencing is necessary to diagnose ACAN variants that cause short stature. In general, appropriate rhGH and/or GnRHa therapy can improve the adult height of affected pediatric patients caused by ACAN variants.


Assuntos
Nanismo , Hormônio do Crescimento Humano , Adulto , Humanos , Criança , Genótipo , Fenótipo , Heterozigoto , Homozigoto , Pacientes , Agrecanas
2.
BMC Musculoskelet Disord ; 25(1): 282, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609896

RESUMO

OBJECTIVE: Ferritin heavy chain 1 (FTH1) is an important subunit of ferro-storing proteins and is indispensable for iron metabolism. Though it has been extensively studied in numerous organs and diseases, the relationship between FTH1 and osteoarthritis (OA) is unclear. DESIGN: Primary murine chondrocytes and cartilage explants were treated with FTH1 siRNA for 72 h. Mice were injected with adenovirus expressing FTH1 after destabilized medial meniscus (DMM) surgery. These approaches were used to determine the effect of FTH1 expression on the pathophysiology of OA. RESULTS: FTH1 expression was down regulated in OA patients and mice after DMM surgery. Knock down of FTH1 induced articular cartilage damage and extracellular matrix degradation in cartilage explants. Further, over expression of FTH1 reduced the susceptibility of chondrocytes to ferroptosis and reversed decrements in SOX9 and aggrecan after DMM surgery. Moreover, FTH1 relieved OA by inhibition of the chondrocyte MAPK pathway. CONCLUSION: This study found FTH1 to play an essential role in extracellular matrix degradation, ferroptosis, and chondrocytes senescence during OA progression. Further, injection of adenovirus expressing FTH1 may be a potential strategy for OA prevention and therapy.


Assuntos
Osteoartrite , Animais , Humanos , Camundongos , Adenoviridae/genética , Agrecanas , Condrócitos , Matriz Extracelular , Ferritinas , Osteoartrite/genética , Oxirredutases
3.
BMC Musculoskelet Disord ; 25(1): 249, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561725

RESUMO

BACKGROUND: This study investigated the role of Galectin-3 in the degeneration of intervertebral disc cartilage. METHODS: The patients who underwent lumbar spine surgery due to degenerative disc disease were recruited and divided into Modic I, Modic II, and Modic III; groups. HE staining was used to detect the pathological changes in endplates. The changes of Galectin-3, MMP3, Aggrecan, CCL3, and Col II were detected by immunohistochemistry, RT-PCR, and Western blot. MTT and flow cytometry were used to detect cartilage endplate cell proliferation, cell cycle, and apoptosis. RESULTS: With the progression of degeneration (from Modic I to III), the chondrocytes and density of the cartilage endplate of the intervertebral disc decreased, and the collagen arrangement of the cartilage endplate of the intervertebral disc was broken and calcified. Meanwhile, the expressions of Aggrecan, Col II, Galectin-3, Aggrecan, and CCL3 gradually decreased. After treatment with Galectin-3 inhibitor GB1107, the proliferation of rat cartilage end plate cells was significantly reduced (P < 0.05). GB1107 (25 µmol/L) also significantly promoted the apoptosis of cartilage endplate cells (P < 0.05). Moreover, the percentage of cartilage endplate cells in the G1 phase was significantly higher, while that in the G2 and S phases was significantly lower (P < 0.05). Additionally, the mRNA and protein expression levels of MMP3, CCL3, and Aggrecan in rat cartilage end plate cells were lower than those in the control group. CONCLUSIONS: Galectin-3 decreases with the progression of the cartilage endplate degeneration of the intervertebral disc. Galectin-3 may affect intervertebral disc degeneration by regulating the degradation of the extracellular matrix.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Animais , Humanos , Ratos , Agrecanas/genética , Agrecanas/metabolismo , Cartilagem/metabolismo , Galectina 3/genética , Galectina 3/metabolismo , Disco Intervertebral/patologia , Degeneração do Disco Intervertebral/patologia , Metaloproteinase 3 da Matriz
4.
Int J Biol Sci ; 20(6): 1965-1977, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38617544

RESUMO

Osteoarthritis (OA) is the most prevalent degenerative joint disorder, causing physical impairments among the elderly. Core binding factor subunit ß (Cbfß) has a critical role in bone homeostasis and cartilage development. However, the function and mechanism of Cbfß in articular cartilage and OA remains unclear. We found that Cbfßf/fAggrecan-CreERT mice with Cbfß-deficiency in articular cartilage developed a spontaneous osteoarthritis-like phenotype with articular cartilage degradation. Immunofluorescence staining showed that Cbfßf/fAggrecan-CreERT mice exhibited a significant increase in the expression of articular cartilage degradation markers and inflammatory markers in the knee joints. RNA-sequencing analysis demonstrated that Cbfß orchestrated Hippo/Yap, TGFß/Smad, and Wnt/ß-catenin signaling pathways in articular cartilage, and Cbfß deficiency resulted in the abnormal expression of downstream genes involved in maintaining articular cartilage homeostasis. Immunofluorescence staining results showed Cbfß deficiency significantly increased active ß-catenin and TCF4 expression while reducing Yap, TGFß1, and p-Smad 2/3 expression. Western blot and qPCR validated gene expression changes in hip articular cartilage of Cbfß-deficient mice. Our results demonstrate that deficiency of Cbfß in articular cartilage leads to an OA-like phenotype via affecting Hippo/Yap, TGFß, and Wnt/ß-catenin signaling pathways, disrupting articular cartilage homeostasis and leading to the pathological process of OA in mice. Our results indicate that targeting Cbfß may be a potential therapeutic target for the design of novel and effective treatments for OA.


Assuntos
Cartilagem Articular , Osteoartrite , Animais , Camundongos , Agrecanas , beta Catenina/genética , Osteoartrite/genética , Fenótipo , Fator de Crescimento Transformador beta , Via de Sinalização Wnt/genética
5.
Int J Mol Sci ; 25(6)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38542192

RESUMO

Osteoarthritis is a widespread chronic degenerative disease marked by the deterioration of articular cartilage, modifications in subchondral bone, and a spectrum of symptoms, including pain, stiffness, and disability. Ultimately, this condition impairs the patient's quality of life. This study aimed to evaluate the therapeutic efficacy of standardized Boswellia serrata gum resin extract (BSRE) in a rat model of monosodium iodoacetate (MIA)-induced osteoarthritis. A total of 60 rats were allocated into six groups: normal control group (NC), osteoarthritis control (injected with MIA, OC), O + B50 (injected with MIA and treated with 50 mg/kg body weight (BW) BSRE), O + B75 (injected with MIA and treated with 75 mg/kg BW BSRE), O + B100 (injected with MIA and treated with 100 mg/kg BW BSRE), and O + M (injected with MIA and treated with 150 mg/kg BW methyl sulfonyl methane). Several parameters, including knee joint swelling, histopathological changes, and the expression of collagen type II alpha 1 (COL2A1) and aggrecan, were comprehensively assessed. Concurrently, the serum levels and mRNA expression of inflammatory mediators, cytokines, and matrix metalloproteinases (MMPs) were analyzed in both the serum and knee joint synovium. The results demonstrated that BSRE significantly mitigated knee joint swelling, cartilage destruction, and tissue deformation. Notably, BSRE administration markedly upregulated the expression of COL2A1 and aggrecan while concurrently reducing levels of nitric oxide, prostaglandin E2, leukotriene B4, interleukin (IL)-6, and tumor necrosis factor (TNF)-α. Furthermore, a substantial decrease was observed in the mRNA expression of inducible nitric oxide synthase, cyclooxygenase-2, 5-lipoxygenase, IL-6, TNF-α and MMP-3 and -13, thereby indicating promising therapeutic implications for osteoarthritis. In conclusion, BSRE exhibited anti-inflammatory properties and inhibited cartilage matrix degradation in a rat model of MIA-induced osteoarthritis, with the O + B100 group showing significant reductions in swelling and notable improvements in joint cartilage damage. These findings illuminate the preventive and therapeutic potential of BSRE for osteoarthritis treatment, emphasizing the criticality of exhaustive evaluation of novel compounds.


Assuntos
Boswellia , Cartilagem Articular , Osteoartrite , Ratos , Humanos , Animais , Boswellia/metabolismo , Agrecanas/metabolismo , Qualidade de Vida , Modelos Animais de Doenças , Osteoartrite/metabolismo , Inflamação/metabolismo , Articulação do Joelho/patologia , Ácido Iodoacético/efeitos adversos , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , RNA Mensageiro/metabolismo , Cartilagem Articular/metabolismo
6.
Stem Cell Res Ther ; 15(1): 75, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38475906

RESUMO

BACKGROUND: Annulus fibrosis (AF) defects have been identified as the primary cause of disc herniation relapse and subsequent disc degeneration following discectomy. Stem cell-based tissue engineering offers a promising approach for structural repair. Menstrual blood-derived mesenchymal stem cells (MenSCs), a type of adult stem cell, have gained attention as an appealing source for clinical applications due to their potential for structure regeneration, with ease of acquisition and regardless of ethical issues. METHODS: The differential potential of MenSCs cocultured with AF cells was examined by the expression of collagen I, SCX, and CD146 using immunofluorescence. Western blot and ELISA were used to examine the expression of TGF-ß and IGF-I in coculture system. An AF defect animal model was established in tail disc of Sprague-Dawley rats (males, 8 weeks old). An injectable gel containing MenSCs (about 1*106/ml) was fabricated and transplanted into the AF defects immediately after the animal model establishment, to evaluate its repairment properties. Disc degeneration was assessed via magnetic resonance (MR) imaging and histological staining. Immunohistochemical analysis was performed to assess the expression of aggrecan, MMP13, TGF-ß and IGF-I in discs with different treatments. Apoptosis in the discs was evaluated using TUNEL, caspase3, and caspase 8 immunofluorescence staining. RESULTS: Coculturing MenSCs with AF cells demonstrated ability to express collagen I and biomarkers of AF cells. Moreover, the coculture system presented upregulation of the growth factors TGF-ß and IGF-I. After 12 weeks, discs treated with MenSCs gel exhibited significantly lower Pffirrmann scores (2.29 ± 0.18), compared to discs treated with MenSCs (3.43 ± 0.37, p < 0.05) or gel (3.71 ± 0.29, p < 0.01) alone. There is significant higher MR index in disc treated with MenSCs gel than that treated with MenSCs (0.51 ± 0.05 vs. 0.24 ± 0.04, p < 0.01) or gel (0.51 ± 0.05 vs. 0.26 ± 0.06, p < 0.01) alone. Additionally, MenSCs gel demonstrated preservation of the structure of degenerated discs, as indicated by histological scoring (5.43 ± 0.43 vs. 9.71 ± 1.04 in MenSCs group and 10.86 ± 0.63 in gel group, both p < 0.01), increased aggrecan expression, and decreased MMP13 expression in vivo. Furthermore, the percentage of TUNEL and caspase 3-positive cells in the disc treated with MenSCs Gel was significantly lower than those treated with gel alone and MenSCs alone. The expression of TGF-ß and IGF-I was higher in discs treated with MenSCs gel or MenSCs alone than in those treated with gel alone. CONCLUSION: MenSCs embedded in collagen I gel has the potential to preserve the disc structure and prevent disc degeneration after discectomy, which was probably attributed to the paracrine of growth factors of MenSCs.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Células-Tronco Mesenquimais , Masculino , Ratos , Animais , Degeneração do Disco Intervertebral/patologia , Disco Intervertebral/patologia , Fator de Crescimento Insulin-Like I/metabolismo , Metaloproteinase 13 da Matriz , Agrecanas/metabolismo , Ratos Sprague-Dawley , Discotomia , Células-Tronco Mesenquimais/metabolismo , Colágeno Tipo I/metabolismo , Fator de Crescimento Transformador beta/metabolismo
7.
J Orthop Surg Res ; 19(1): 158, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429844

RESUMO

BACKGROUND: Osteoarthritis (OA) is a joint disease characterized by inflammation and progressive cartilage degradation. Chondrocyte apoptosis is the most common pathological feature of OA. Interleukin-1ß (IL-1ß), a major inflammatory cytokine that promotes cartilage degradation in OA, often stimulates primary human chondrocytes in vitro to establish an in vitro OA model. Moreover, IL-1ß is involved in OA pathogenesis by stimulating the phosphoinositide-3-kinase (PI3K)/Akt and mitogen-activated protein kinases pathways. The G-protein-coupled receptor, cc chemokine receptor 10 (CCR10), plays a vital role in the occurrence and development of various malignant tumors. However, the mechanism underlying the role of CCR10 in the pathogenesis of OA remains unclear. We aimed to evaluate the protective effect of CCR10 on IL-1ß-stimulated CHON-001 cells and elucidate the underlying mechanism. METHODS: The CHON-001 cells were transfected with a control small interfering RNA (siRNA) or CCR10-siRNA for 24 h, and stimulated with 10 ng/mL IL-1ß for 12 h to construct an OA model in vitro. The levels of CCR10, cleaved-caspase-3, MMP-3, MMP-13, Collagen II, Aggrecan, p-PI3K, PI3K, p-Akt, Akt, phosphorylated-mammalian target of rapamycin (p-mTOR), and mTOR were detected using quantitative reverse transcription polymerase chain reaction and western blotting. Viability, cytotoxicity, and apoptosis of CHON-001 cells were assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, lactate dehydrogenase assay (LDH), and flow cytometry analysis, respectively. Inflammatory cytokines (TNF-α, IL-6, and IL-8) were assessed using enzyme-linked immunosorbent assay. RESULTS: Level of CCR10 was substantially higher in the IL-1ß-stimulated CHON-001 cells than that in the control group, whereas CCR10 was down-regulated in the CCR10-siRNA transfected CHON-001 cells compared to that in the control-siRNA group. Notably, CCR10 inhibition alleviated IL-1ß-induced inflammatory injury in the CHON-001 cells, as verified by enhanced cell viability, inhibited LDH release, reduced apoptotic cells, and cleaved-caspase-3 expression. Meanwhile, IL-1ß induced the release of tumor necrosis factor alpha, IL-6, and IL-8, increase of MMP-3 and MMP-13, and decrease of Collagen II and Aggrecan in the CHON-001 cells, which were reversed by CCR10-siRNA. However, these effects were reversed upon PI3K agonist 740Y-P treatment. Further, IL-1ß-induced PI3K/Akt/mTOR signaling pathway activation was inhibited by CCR10-siRNA, which was increased by 740Y-P treatment. CONCLUSION: Inhibition of CCR10 alleviates IL-1ß-induced chondrocytes injury via PI3K/Akt/mTOR pathway inhibition, suggesting that CCR10 might be a promising target for novel OA therapeutic strategies.


Assuntos
Osteoartrite , Fragmentos de Peptídeos , Fosfatidilinositol 3-Quinase , Receptores do Fator de Crescimento Derivado de Plaquetas , Humanos , Agrecanas , Caspase 3 , Colágeno , Citocinas , Interleucina-6 , Interleucina-8 , Metaloproteinase 13 da Matriz/genética , Metaloproteinase 3 da Matriz , Osteoartrite/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositóis , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores CCR10 , RNA Interferente Pequeno , Serina-Treonina Quinases TOR
8.
In Vitro Cell Dev Biol Anim ; 60(3): 287-299, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38485818

RESUMO

The study aimed to investigate the effect of ginsenoside Rg1 on intervertebral disc degeneration (IVDD) in rats and IL-1ß-induced nucleus pulposus (NP) cells, and explore its underlying mechanism. Forty IVDD rat models were divided into the IVDD group, low-dose (L-Rg1) group (intraperitoneal injection of 20 mg/kg/d ginsenoside Rg1), medium-dose (M-Rg1) group (intraperitoneal injection of 40 mg/kg/d ginsenoside Rg1), and high-dose (H-Rg1) group (intraperitoneal injection of 80 mg/kg/d ginsenoside Rg1). The pathological change was observed by HE and safranin O-fast green staining. The expression of IL-1ß, IL-6, TNF-α, MMP3, aggrecan, and collagen II was detected. The expression of NF-κB p65 in IVD tissues was detected. Rat NP cells were induced by IL-1ß to simulate IVDD environment and divided into the control group, IL-1ß group, and 20, 50, and 100 µmol/L Rg1 groups. The cell proliferation activity, the apoptosis, and the expression of IL-6, TNF-α, MMP3, aggrecan, collagen II, and NF-κB pathway-related protein were detected. In IVDD rats, ginsenoside Rg1 improved the pathology of IVD tissues; suppressed the expression of IL-1ß, IL-6, TNF-α, aggrecan, and collagen II; and inhibited the expression of p-p65/p65 and nuclear translocation of p65, to alleviate the IVDD progression. In the IL-1ß-induced NP cells, ginsenoside Rg1 also improved the cell proliferation and inhibited the apoptosis and the expression of IL-6, TNF-α, aggrecan, collagen II, p-p65/p65, and IκK in a dose-dependent manner. Ginsenoside Rg1 alleviated IVDD in rats and inhibited apoptosis, inflammatory response, and ECM degradation in IL-1ß-induced NP cells. And Rg1 may exert its effect via inhibiting the activation of NF-κB signaling pathway.


Assuntos
Ginsenosídeos , Degeneração do Disco Intervertebral , Disco Intervertebral , Núcleo Pulposo , Doenças dos Roedores , Ratos , Animais , NF-kappa B/metabolismo , Degeneração do Disco Intervertebral/tratamento farmacológico , Degeneração do Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/patologia , Metaloproteinase 3 da Matriz/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Agrecanas/genética , Transdução de Sinais , Colágeno/farmacologia , Inflamação/patologia , Apoptose , Disco Intervertebral/metabolismo , Disco Intervertebral/patologia , Doenças dos Roedores/metabolismo , Doenças dos Roedores/patologia
9.
ACS Biomater Sci Eng ; 10(4): 2426-2441, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38549452

RESUMO

The meniscus is divided into three zones according to its vascularity: an external vascularized red-red zone mainly comprising collagen I, a red-white interphase zone mainly comprising collagens I and II, and an internal white-white zone rich in collagen II. Known scaffolds used to treat meniscal injuries do not reflect the chemical composition of the vascular areas of the meniscus. Therefore, in this study, four composite zonal scaffolds (named A, B, C, and D) were developed and characterized; the developed scaffolds exhibited the main chemical components of the external (collagen I), interphase (collagens I/II), and internal (collagen II) zones of the meniscus. Noncomposite scaffolds were also produced (named E), which had the same shape as the composite scaffolds but were entirely made of collagen I. The composite zonal scaffolds were prepared using different concentrations of collagen I and the same concentration of collagen II and were either cross-linked with genipin or not cross-linked. Porous, biodegradable, and hydrophilic scaffolds with an expected chemical composition were obtained. Their pore size was smaller than the size reported for the meniscus substitutes; however, all scaffolds allowed the adhesion and proliferation of human adipose-derived stem cells (hADSCs) and were not cytotoxic. Data from enzymatic degradation and hADSC proliferation assays were considered for choosing the cross-linked composite scaffolds along with the collagen I scaffold and to test if composite zonal scaffolds seeded with hADSC and cultured with differentiation medium produced fibrocartilage-like tissue different from that formed in noncomposite scaffolds. After 21 days of culture, hADSCs seeded on composite scaffolds afforded an extracellular matrix with aggrecan, whereas hADSCs seeded on noncomposite collagen I scaffolds formed a matrix-like fibrocartilage without aggrecan.


Assuntos
Menisco , Tecidos Suporte , Humanos , Tecidos Suporte/química , Engenharia Tecidual , Agrecanas , Colágeno Tipo I/farmacologia , Colágeno/farmacologia , Regeneração
10.
Acta Cir Bras ; 39: e390924, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38324802

RESUMO

PURPOSE: Osteoarthritis (OA) is a degenerative joint disease which is categorized via destruction of joint cartilage and it also affects the various joints, especially knees and hips. Sinomenine active phytoconstituents isolated from the stem of Sinomenium acutum and already proof anti-inflammatory effect against the arthritis model of rodent. In this experimental protocol, we scrutinized the anti-osteoarthritis effect of sinomenine against monosodium iodoacetate (MIA) induced OA in rats. METHODS: MIA (3 mg/50 µL) was used for inducing the OA in the rats, and rats received the oral administration of sinomenine (2.5, 5 and 7.5 mg/kg body weight) up to the end of the experimental study (four weeks). The body and organs weight were estimated. Aggrecan, C-terminal cross-linked telopeptide of type II collagen (CTX-II), glycosaminoglycans (GCGs), monocyte chemoattractant protein-1 (MCP-1), Interferon gamma (IFN-γ), antioxidant, inflammatory cytokines, inflammatory mediators and matrix metalloproteinases (MMP) were analyzed. RESULTS: Sinomenine significantly (P < 0.001) boosted the body weight and reduced the heart weight, but the weight of spleen and kidney remain unchanged. Sinomenine significantly (P < 0.001) reduced the level of nitric oxide, MCP-1 and improved the level of aggrecan, IFN-γ and GCGs. Sinomenine remarkably upregulated the level of glutathione, superoxide dismutase and suppressed the level of malonaldehyde. It effectually modulated the level of inflammatory cytokines and inflammatory mediators and significantly (P < 0.001) reduced the level of MMPs, like MMP-1, 2, 3, 9 and 13. CONCLUSIONS: Sinomenine is a beneficial active agent for the treatment of OA disease.


Assuntos
Cartilagem Articular , Morfinanos , Osteoartrite , Ratos , Animais , Ácido Iodoacético/metabolismo , Ácido Iodoacético/farmacologia , Osteoartrite/metabolismo , Agrecanas/metabolismo , Agrecanas/farmacologia , Modelos Animais de Doenças , Cartilagem Articular/metabolismo , Metaloproteinases da Matriz/metabolismo , Citocinas/metabolismo , Mediadores da Inflamação/metabolismo , Peso Corporal
11.
Am J Sports Med ; 52(4): 1075-1087, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38419462

RESUMO

BACKGROUND: Bioengineered cartilage is a developing therapeutic to repair cartilage defects. The matrix must be rich in collagen type II and aggrecan and mechanically competent, withstanding compressive and shearing loads. Biomechanical properties in native articular cartilage depend on the zonal architecture consisting of 3 zones: superficial, middle, and deep. The superficial zone chondrocytes produce lubricating proteoglycan-4, whereas the deep zone chondrocytes produce collagen type X, which allows for integration into the subchondral bone. Zonal and chondrogenic expression is lost after cell number expansion. Current cell-based therapies have limited capacity to regenerate the zonal structure of native cartilage. HYPOTHESIS: Both passaged superficial and deep zone chondrocytes at high density can form bioengineered cartilage that is rich in collagen type II and aggrecan; however, only passaged superficial zone-derived chondrocytes will express superficial zone-specific proteoglycan-4, and only passaged deep zone-derived chondrocytes will express deep zone-specific collagen type X. STUDY DESIGN: Controlled laboratory study. METHODS: Superficial and deep zone chondrocytes were isolated from bovine joints, and zonal subpopulations were separately expanded in 2-dimensional culture. At passage 2, superficial and deep zone chondrocytes were seeded, separately, in scaffold-free 3-dimensional culture within agarose wells and cultured in redifferentiation media. RESULTS: Monolayer expansion resulted in loss of expression for proteoglycan-4 and collagen type X in passaged superficial and deep zone chondrocytes, respectively. By passage 2, superficial and deep zone chondrocytes had similar expression for dedifferentiated molecules collagen type I and tenascin C. Redifferentiation of both superficial and deep zone chondrocytes led to the expression of collagen type II and aggrecan in both passaged chondrocyte populations. However, only redifferentiated deep zone chondrocytes expressed collagen type X, and only redifferentiated superficial zone chondrocytes expressed and secreted proteoglycan-4. Additionally, redifferentiated deep zone chondrocytes produced a thicker and more robust tissue compared with superficial zone chondrocytes. CONCLUSION: The recapitulation of the primary phenotype from passaged zonal chondrocytes introduces a novel method of functional bioengineering of cartilage that resembles the zone-specific biological properties of native cartilage. CLINICAL RELEVANCE: The recapitulation of the primary phenotype in zonal chondrocytes could be a possible method to tailor bioengineered cartilage to have zone-specific expression.


Assuntos
Cartilagem Articular , Condrócitos , Humanos , Animais , Bovinos , Condrócitos/metabolismo , Agrecanas/metabolismo , Colágeno Tipo II/metabolismo , Colágeno Tipo X/metabolismo , Diferenciação Celular , Células Cultivadas , Engenharia Tecidual/métodos
12.
Toxicol Lett ; 393: 14-23, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38211732

RESUMO

Prednisone is frequently used to treat rheumatoid diseases in pregnant women because of its high degree of safety. Whether prenatal prednisone exposure (PPE) negatively impacts fetal articular cartilage development is unclear. In this study, we simulated a clinical prednisone treatment regimen to examine the effects of different timings and doses of PPE on cartilage development in female and male fetal mice. Prednisone doses (0.25, 0.5, and 1 mg/kg/d) was administered to Kunming mice at different gestational stages (0-9 gestational days, GD0-9), mid-late gestation (GD10-18), or during the entire gestation (GD0-18) by oral gavage. The amount of matrix aggrecan (ACAN) and collagen type II a1(COL2a1), and expression of transforming growth factor ß1 (TGFß1) signaling pathway also demonstrated that the chondrocyte count and ACAN and COL2a1 expression reduced in fetal mice with early and mid-late PPE, with the reduction being more significant in the mice with early PPE than that in those with PPE at other stages. Prenatal exposure to different prednisone doses prevented the reduction of TGFß signaling pathway-related genes [TGFßR1, SMAD family member 3 (Smad3), SRY-box9 (SOX9)] as well as ACAN and COL2a1 mRNA expression levels in fetal mouse cartilage, with the most significant decrease after 1 mg/kg·d PPE. In conclusion, PPE can inhibit/restrain fetal cartilage development, with the greatest effect at higher clinical dose (1 mg/kg·d) and early stage of pregnancy (GD0-9), and the mechanism may be related to TGFß signaling pathway inhibition. The result of this study provide a theoretical and experimental foundation for the rational clinical use of prednisone.


Assuntos
Cartilagem Articular , Humanos , Camundongos , Feminino , Masculino , Gravidez , Animais , Prednisona/toxicidade , Prednisona/metabolismo , Agrecanas/metabolismo , Feto/metabolismo , Condrócitos , Fator de Crescimento Transformador beta/metabolismo , Colágeno Tipo II/genética , Colágeno Tipo II/toxicidade , Colágeno Tipo II/metabolismo
13.
Sci Rep ; 14(1): 1112, 2024 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-38212477

RESUMO

The purpose of the study was to assess the association of cartilage metabolism biomarkers and vitamin D metabolite levels with muscle biomechanical functions in professional rowers and canoeists. The serum levels of aggrecan, cartilage oligomeric matrix protein (COMP), and 25-hydroxyvitamin D (25(OH)D) were determined in elite male sweep-oar rowers (n = 24) and canoeists (n = 15). This was followed by a biomechanical study consisting in isometric measurement of peak torque (PT) of muscles involved in the rowing cycle in the athletes. There were found significant correlations of COMP with the ratio of trunk PT flexor to extensor (p < 0.05) and 25(OH)D with trunk PT-left rotators (p < 0.05), knee joints PT-left and right flexor (p ≤ 0.01), ratio of knee joint PT-right flexor to knee joint PT-right extensor (p < 0.05) in rowers and aggreccan with elbow joint PT of the right flexor (p ≤ 0.01) and extensor (p = 0.05) in canoeists. The correlations of COMP and aggrecan levels with PT of the muscle groups studied in rowers and canoeists indicate the importance of stabilizing the muscular system in cartilage metabolism. The relationship between 25(OH)D status and biomechanical parameters confirm that vitamin D plays an important role in maintaining skeletal muscle health.


Assuntos
Joelho , Músculo Esquelético , Humanos , Masculino , Agrecanas , Músculo Esquelético/fisiologia , Joelho/fisiologia , Vitamina D , Cartilagem
14.
J Bone Miner Metab ; 42(1): 1-16, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38055109

RESUMO

INTRODUCTION: Osteoarthritis (OA) compromises patients' quality of life and requires further study. Although miR-92a-3p was reported to possess chondroprotective effects, the underlying mechanism requires further clarification. The objectives of this study were to elucidate the mechanism by which miR-92a-3p alleviates OA and to examine the efficacy of shRNA-92a-3p, which was designed based on mature miR-92a-3p. MATERIALS AND METHODS: TargetScan and luciferase reporter assay were used to predict the target of miR-92a-3p. Adipose-derived stem cells (ADSCs) were transfected with miR-92a-3p/miR-NC mimic for the analysis of chondrogenic biomarkers and SMAD proteins. ADSCs and osteoarthritic chondrocytes were transduced with shRNA-92a-3p for the analysis of chondrogenic biomarkers and SMAD proteins. OA was surgically induced in C57BL/6JJcl mice, and ADSCs with/without shRNA-92a-3p transduction were intra-articularly injected for the assessment of cartilage damage. RESULTS: SMAD6 and SMAD7 were predicted as direct targets of miR-92a-3p by TargetScan and luciferase reporter assay. Transfection of the miR-92a-3p mimic resulted in a decrease in SMAD6 and SMAD7 levels and an increase in phospho-SMAD2/3, phospho-SMAD1/5/9, SOX9, collagen type II, and aggrecan levels in ADSCs. Furthermore, shRNA-92a-3p decreased SMAD6 and SMAD7 levels, and increased phospho-SMAD2/3, phospho-SMAD1/5/9, SOX9, collagen type II, and aggrecan levels in ADSCs and osteoarthritic chondrocytes. Additionally, ADSC-shRNA-92a-3p-EVs reduced the rate of decrease of SOX9, collagen type II, and aggrecan in osteoarthritic chondrocytes. In mice with surgically induced OA, shRNA-92a-3p-treated ADSCs alleviated cartilage damage more effectively than nontreated ADSCs. CONCLUSIONS: miR-92a-3p and shRNA-92a-3p exhibit therapeutic effects in treating OA by targeting SMAD6 and SMAD7, thereby enhancing TGF-ß signaling.


Assuntos
MicroRNAs , Osteoartrite , Humanos , Animais , Camundongos , Condrócitos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Colágeno Tipo II/metabolismo , Agrecanas/metabolismo , Qualidade de Vida , Camundongos Endogâmicos C57BL , Osteoartrite/genética , Osteoartrite/terapia , Osteoartrite/metabolismo , Proteínas Smad/metabolismo , Biomarcadores/metabolismo , Luciferases/metabolismo , Luciferases/farmacologia , Proteína Smad6/metabolismo , Proteína Smad6/farmacologia
15.
J Cell Mol Med ; 28(2): e18054, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38009813

RESUMO

This present study is aimed to investigate the role of microRNA-365 (miR-365) in the development of intervertebral disc degeneration (IDD). Nucleus pulposus (NP) cells were transfected by miR-365 mimic and miR-365 inhibitor, respectively. Concomitantly, the transfection efficiency and the expression level of miRNA were detected by quantitative reverse transcription polymerase chain reaction (qRT-PCR). Meanwhile, NP cells apoptosis was measured through propidium iodide (PI)-AnnexinV-fluorescein isothiocyanate (FITC) apoptosis detection kit. Subsequently, immunofluorescence (IF) staining was performed to assess the expression of collagen II, aggrecan and matrix metalloproteinase 13 (MMP-13). In addition, bioinformatic prediction and Luciferase reporter assay were used to reveal the target gene of miR-365. Finally, we isolated the primary NP cells from rats and injected NP-miR-365 in rat IDD models. The results showed that overexpression of miR-365 could effectively inhibit NP cells apoptosis and MMP-13 expression and upregulate the expression of collagen II and aggrecan. Conversely, suppression of miR-365 enhanced NP cell apoptosis and elevated MMP-13 expression, but decreased the expression of collagen II and aggrecan. Moreover, the further data demonstrated that miR-365 mediated NP cell degradation through targeting ephrin-A3 (EFNA3). In addition, the cells apoptosis and catabolic markers were increased in NP cells when EFNA3 upregulated. More importantly, the vivo data supported that miR-365-NP cells injection ameliorated IDD in rats models. miR-365 could alleviate the development of IDD by regulating NP cell apoptosis and ECM degradation, which is likely mediated by targeting EFNA3. Therefore, miR-365 may be a promising therapeutic avenue for treatment IDD through EFNA3.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , MicroRNAs , Núcleo Pulposo , Ratos , Animais , MicroRNAs/metabolismo , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/metabolismo , Núcleo Pulposo/metabolismo , Metaloproteinase 13 da Matriz/genética , Metaloproteinase 13 da Matriz/metabolismo , Efrina-A3 , Agrecanas/genética , Agrecanas/metabolismo , Matriz Extracelular/metabolismo , Apoptose/genética , Colágeno/metabolismo , Disco Intervertebral/metabolismo
16.
Mol Neurobiol ; 61(1): 411-422, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37615879

RESUMO

Anxiety disorder is one of the most common mental disorders worldwide, affecting nearly 30% of adults. However, its underlying molecular mechanisms are still unclear. Here we subjected mice to chronic restraint stress (CRS), a paradigm known to induce anxiety-like behavior in mice. CRS mice exhibited anxiety-like behavior and reduced synaptic transmission in the medial prefrontal cortex (mPFC). Notably, Wisteria Floribunda agglutinin (WFA) staining showed a reduction of perineuronal nets (PNNs) expression in the mPFC of CRS mice. And the mRNA and protein levels of aggrecan (ACAN), a core component of PNNs, were also reduced. Parallelly, enzymatic digestion of PNNs in the mPFC by injecting Chondroitinase ABC (chABC) resulted in anxiety-like behavior in mice. Fluoxetine (FXT) is a clinically prescribed antidepressant/anxiolytic drug. FXT treatment in CRS mice not only ameliorated their deficits in behavior and synaptic transmissions, but also prevented CRS-induced reduction of PNNs and ACAN expressions. This study demonstrates that proper PNNs level is critical to brain functions, and their decline may serve as a pathological mechanism of anxiety disorders.


Assuntos
Matriz Extracelular , Parvalbuminas , Humanos , Adulto , Camundongos , Animais , Parvalbuminas/metabolismo , Matriz Extracelular/metabolismo , Agrecanas/metabolismo , Ansiedade , Transmissão Sináptica
17.
J Biomech ; 162: 111882, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38070296

RESUMO

Tissue-engineered osteochondral implants manufactured from condensed mesenchymal stem cell bodies have shown promise for treating focal cartilage defects. Notably, such manufacturing techniques have shown to successfully recapture the bulk mechanical properties of native cartilage. However, the relationships among the architectural features, local composition, and micromechanical environment within tissue-engineered cartilage from cell-based aggregates remain unclear. Understanding such relationships is crucial for identifying critical parameters that can predict in vivo performance. Therefore, this study investigated the relationship among architectural features, composition, and micromechanical behavior of tissue-engineered osteochondral implants. We utilized fast-confocal microscopy combined with a strain mapping technique to analyze the micromechanical behavior under quasi-static loading, as well as Fourier Transform Infrared Spectroscopy to analyze the local compositions. More specifically, we investigated the architectural features and compositional distributions generated from tissue maturation, along with macro- and micro-level strain distributions. Our results showed that under compression, cell-based aggregates underwent deformation followed by body movement, generating high local strain around the boundaries, where local aggrecan concentration was low and local collagen concentration was high. By analyzing the micromechanics and composition at the single aggregate length scale, we identified a strong threshold relationship between local strain and compositions. Namely at the aggrecan concentration below 0.015 arbitrary unit (A.U.) and the collagen concentration above 0.15 A.U., the constructs experienced greater than threefold increase in compressive strain. Overall, this study suggests that local compositional features are the primary driver of the local mechanical environment in tissue-engineered cartilage constructs, providing insight into potential quality control parameters for manufacturing tissue-engineered constructs.


Assuntos
Cartilagem Articular , Engenharia Tecidual , Agrecanas , Engenharia Tecidual/métodos , Cartilagem , Próteses e Implantes , Colágeno , Condrócitos , Tecidos Suporte/química
18.
Aging (Albany NY) ; 15(23): 13646-13654, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38059882

RESUMO

Osteoarthritis (OA) is a joint degenerative disease commonly observed in the old population, lacks effective therapeutic methods, and markedly impacts the normal lives of patients. Degradation of extracellular matrix (ECM) is reported to participate in OA development, which is a potential target for treating OA. Cabozantinib is an inhibitor of tyrosine kinases and is recently claimed with suppressive properties against inflammation. Herein, the protective function of Cabozantinib on advanced glycation end products (AGEs)-induced damages to chondrocytes was tested. SW1353 chondrocytes were stimulated with 100 µg/ml AGEs with or without 10 and 20 µM Cabozantinib for 24 h. Signally increased reactive oxygen species (ROS) levels, declined reduced glutathione (GSH) levels, and elevated release of inflammatory cytokines were observed in AGEs-stimulated SW1353 chondrocytes, which were markedly reversed by Cabozantinib. Moreover, the notably reduced type II collagen and aggrecan levels, and increased matrix metalloproteinase-13 (MMP-13) and A Disintegrin and Metalloproteinase with Thrombospondin Motifs-5 (ADAMTS-5) levels in AGEs-stimulated SW1353 chondrocytes were largely rescued by Cabozantinib. The downregulated Sry-type high-mobility-group box 9 (SOX-9) observed in AGEs-stimulated SW1353 chondrocytes was abolished by Cabozantinib. Furthermore, the impact of Cabozantinib on type II collagen and aggrecan levels in AGEs-treated SW1353 chondrocytes was abrogated by silencing SOX-9. Collectively, Cabozantinib prevented AGEs-induced degradation of type 2 collagen and aggrecan in human chondrocytes by mediating SOX-9.


Assuntos
Condrócitos , Citocinas , Humanos , Condrócitos/metabolismo , Agrecanas/genética , Agrecanas/metabolismo , Colágeno Tipo II/metabolismo , Citocinas/metabolismo , Células Cultivadas
19.
Zhongguo Zhong Yao Za Zhi ; 48(19): 5294-5303, 2023 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-38114119

RESUMO

This paper aims to investigate the effects and mechanisms of adipose-derived stem cells-exosomes(ADSCs-exos) toge-ther with aucubin in protecting human-derived nucleus pulposus cells(NPCs) from inflammatory injury, senescence, and apoptosis. The tert-butyl hydroperoxide(TBHP)-induced NPCs were assigned into normal, model, aucubin, ADSCs-exos, and aucubin+ADSCs-exos groups. The cell viability was examined by cell counting kit-8(CCK-8), cell proliferation by EdU staining, cell senescence by senescence-associated-ß-galactosidase(SA-ß-Gal), and cell cycle and apoptosis by flow cytometry. Enzyme-linked immunosorbent assay was employed to examine the expression of interleukin-1ß(IL-1ß), IL-10, and tumor necrosis factor-α(TNF-α). Real-time fluorescence quantitative PCR and Western blot were employed to determine the mRNA and protein levels of aggregated proteoglycan(aggrecan), type Ⅱ collagen alpha 1(COL2A1), Toll-like receptor 4(TLR4), and nuclear factor-kappa B(NF-κB). The results showed that compared with the model group, the aucubin or ADSCs-exos group showed enhanced viability and proliferation of NPCs, decreased proportion of G_0/G_1 phase cells, increased proportion of S phase cells, reduced apoptosis and proportion of cells in senescence, lowered IL-1ß and TNF-α levels, elevated IL-10 level, down-regulated mRNA and protein levels of TLR4 and NF-κB, and up-regulated mRNA and protein levels of aggrecan and COL2A1. Compared with the aucubin or ADSCs-exos group, the aucubin+ADSCs-exos combination further increased the viability and proliferation of NPCs, decreased the proportion of G_0/G_1 phase cells, increased the proportion of S phase cells, reduced the apoptosis and proportion of cells in senescence, lowered the IL-1ß and TNF-α levels, elevated the IL-10 level, down-regulated the mRNA and protein levels of TLR4 and NF-κB, and up-regulated the mRNA and protein levels of aggrecan and COL2A1. In summary, both aucubin and ADSCs-exos could exert protective effects by inhibiting inflammatory responses, reducing apoptosis and senescence of NPCs, improving cell viability and proliferation as well as extracellular matrix synthesis, which may be associated with the inhibition of TLR4/NF-κB signaling pathway activation. The combination of both plays a synergistic role in the protective effects.


Assuntos
NF-kappa B , Núcleo Pulposo , Humanos , NF-kappa B/genética , NF-kappa B/metabolismo , Interleucina-10 , Núcleo Pulposo/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Agrecanas/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , RNA Mensageiro/metabolismo
20.
Int J Mol Sci ; 24(24)2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38139122

RESUMO

S-adenosylmethionine (SAM) is considered to be a useful therapeutic agent for degenerative cartilage diseases, although its mechanism is not clear. We previously found that polyamines stimulate the expression of differentiated phenotype of chondrocytes. We also found that the cellular communication network factor 2 (CCN2) played a huge role in the proliferation and differentiation of chondrocytes. Therefore, we hypothesized that polyamines and CCN2 could be involved in the chondroprotective action of SAM. In this study, we initially found that exogenous SAM enhanced proteoglycan production but not cell proliferation in human chondrocyte-like cell line-2/8 (HCS-2/8) cells. Moreover, SAM enhanced gene expression of cartilage-specific matrix (aggrecan and type II collagen), Sry-Box transcription factor 9 (SOX9), CCN2, and chondroitin sulfate biosynthetic enzymes. The blockade of the methionine adenosyltransferase 2A (MAT2A) enzyme catalyzing intracellular SAM biosynthesis restrained the effect of SAM on chondrocytes. The polyamine level in chondrocytes was higher in SAM-treated culture than control culture. Additionally, Alcian blue staining and RT-qPCR indicated that the effects of SAM on the production and gene expression of aggrecan were reduced by the inhibition of polyamine synthesis. These results suggest that the stimulation of polyamine synthesis and gene expression of chondrogenic differentiation factors, such as CCN2, account for the mechanism underlying the action of SAM on chondrocytes.


Assuntos
Cartilagem , S-Adenosilmetionina , Humanos , Agrecanas/genética , Agrecanas/metabolismo , S-Adenosilmetionina/farmacologia , S-Adenosilmetionina/metabolismo , Cartilagem/metabolismo , Condrócitos/metabolismo , Diferenciação Celular , Expressão Gênica , Poliaminas/farmacologia , Poliaminas/metabolismo , Células Cultivadas , Regulação da Expressão Gênica , Metionina Adenosiltransferase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...